Transitioning Learners to Calculus in Community Colleges (TLC3): Advancing Strategies for Success in STEM

Transitioning Learners to Calculus in Community Colleges (TLC3) is a research project aimed at transforming institutional approaches to matriculating STEM majors into and through Calculus II in community colleges. This Institutional and Community Transformation Development and Implementation project focuses on the 948 public associate degree-granting institutions (hereafter referred to as community colleges) in the nation. These institutions are crucial to meeting the demand for STEM talent in the U.S. and overwhelmingly serve as the primary pathway into postsecondary education for historically underserved students, particularly racial minority (URM) students. Specifically in this study, URM refers to Black/African American, Hispanic/Latino, Native American, Southeast Asian, and Pacific Islander students. Although URM students are overrepresented in community colleges, they are underrepresented among STEM majors at these institutions. Thus, given demographic shifts in the U.S., there is an acute need to transition more URM students into, though, and out of the Developmental to Pre-calculus to Calculus II (DPC2) sequence in community colleges.

Sign up for our networked community


The broader goal of this study is to build and test theoretical models that predict URM student success in the DPC2 sequence based on programs, structures, and instructional strategies in successful programs. We seek to explicate the nature of student progression toward higher-level math, by identifying factors contributing to URMs success at different levels of the DPC2 sequence, understanding the various transition points within DPC2, and how students’ background characteristics and perceptions of the community college environment impact their transitions. We will develop models that are sensitive to the unique structures of institutions designated as minority serving (MSI) and non-MSI. MSI designations are: (1) predominately Black institutions (PBIs) and historically black colleges and universities (HBCUs), (2) Hispanic Serving Institutions (HSIs), (3) Tribal Colleges and Universities (TCUs), and (4) Asian American and Native American Pacific Islander Serving Institutions (AANAPISIs).

This project has a strong commitment to broadening participation in STEM by understanding the experiences of diverse populations with the specific focus on URM. The greatest impact will undoubtedly involve supporting improvements to DPC2 that aim at increasing the diversity of the nation’s STEM force. The project will engineer a positive feedback loop between research and practical efforts to improve DPC2 sequences across the country. This project has an enhanced likelihood of having far-reaching impact because the research team includes scholars from different disciplinary orientations (e.g., mathematics, social science, higher education) who can leverage their expertise to heighten the transferability and rigor of this research. Finally, traditional dissemination efforts will actively draw upon the resources and reach of the researchers and advisory board members to distribute findings broadly to the entire collegiate mathematics community. This collaboration is integral to enhancing student outcomes as recommendations focused on educators are the most likely to be scalable and within the locus of control of institutional affiliates.


TLC3 gathers a team of higher education researchers, mathematicians, math educators, evaluators, and graduate students in higher education and mathematics education to understand the features that make a program in mathematics successful for STEM URMs at community colleges. These various perspectives enrich our understanding and help in focusing on several dimensions of the phenomenon that have traditionally been studied in isolation (e.g., persistence, retention) or not investigated at all (e.g., instruction).

Principal Investigators

Research Associates

Soko Starobin, Ph.D., External Evaluator

Research Questions

The TLC3 study will answer the following guiding research questions.

  1. What types of programs, structures, and instructional strategies are community colleges currently implementing in the Developmental to Pre-calculus to Calculus II sequence?
  2. What are the effects (if any) of these programs, structures, and instructional strategies on URM students’ success in the Developmental to Pre-calculus to Calculus II sequence?

TLC3 Podcast

Equity-Minded Approaches to Mathematics Education

Episode 8, July 19, 2017

In this episode, Dr. Heather Fox from OCCRL talks with Dr. Helen Burn, a mathematics professor and Director of the Curriculum Research Group at Highland College, about equity-minded approaches to mathematics education.

PDF Transcription

View Dr. Burn's curriculum vitae to learn more about this topic. For all OCCRL podcasts, please visit the Democracy's College page.

TLC3 Webinar

math faculty at table with card with the word change

Professional Development Needs of Community College MathFaculty

Presented September 13, 2017

Webinar Recording

This webinar presents findings from a recent analysis of professional development needs among community college math faculty. Data in this presentation was derived from the Community College Instructional Development Inventory (CCIDI). This inventory is designed to identify areas in need for professional development for college faculty. A special sampling of the CCIDI was conducted as part of the Transitioning Learners to Calculus (TLC3) grant funded by the National Science Foundation (NSF). This webinar focused on a subset of data that addresses the unique disciplinary needs for professional development in mathematics that can improve educational outcomes for underserved students of color.

TLC3 Voices and Viewpoints

TLC3 Publications

Publication Search

        All Publications ›

        TLC3 Events

          This material is based upon work supported by the National Science Foundation under Grant Numbers 1625918, 1625386, 1625946, and 1625891.
          Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

          Back to OCCRL Home Page ›